高中数学必修1知识点总结
机会从不会“失掉”,你失掉了,自有别人会得到。不要凡事在天,守株待兔,更不要寄希望于“机会”。下面给大家带来一些高中数学必修1知识点,希望对大家有所帮助。
高中数学必修1知识点3
1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。
2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。
3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C0(或≥0),另一部分对应二元一次不等式Ax+By+C0(或≤0)。
4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。
5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。“线定界,点定域”。
6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。
7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成虚线。
8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。
9.从实际问题中抽象出二元一次不等式(组)的步骤是:
(1)根据题意,设出变量;
(2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;
(3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。
学好高中数学的方法有哪些
理解知识放首位。
比如:学数学集合的时候,怎么理解交、并、补呢?交、并、补是运算,而运算要定义在某个集合之上,所以交、并、补这三种运算定义在哪个集合之上呢?我们把所有的集合放在一起,构成一个集合(这个集合里的元素是集合,还要注意:我们约定采用ZFC公理体系,其中的正则公理可以将“罗素悖论”排除在外.下文不再重复这个约定),记为M,交、并、补就是定义在集合M上的运算。而运算首先要满足封闭性,所以这三种运算的结果,都是一个集合。
既然谈到运算,怎么能不讨论运算律呢?例如,
数学集合的交满足交换律、结合律;集合的交对并满足分配律;集合的补对交满足德摩根律……这些都是需要搞清楚的问题。有同学觉得给定一种二元运算,交换律、结合律都会天然满足,大错特错啊。例如,实数的减法既不满足交换律,也不满足结合律;函数的复合满足结合律,不满足交换律;向量的内积满足交换律,不满足结合律;命题的或既满足交换律,也满足结合律.
这些知识听上去有点“虚”,但其实是数学的精华所在。
高中数学必修1知识点总结相关文章